Intrinsic Symmetry Groups of Links with 8 and Fewer Crossings

نویسندگان

  • Michael Berglund
  • Jason Cantarella
  • Meredith Perrie Casey
  • Eleanor Dannenberg
  • Whitney George
  • Aja Johnson
  • Amelia Kelley
  • Al LaPointe
  • Matt Mastin
  • Jason Parsley
  • Jacob Rooney
  • Rachel Whitaker
چکیده

We present new computations of “intrinsic” symmetry groups for knots and links of 8 or fewer crossings. The standard symmetry group for a link is the mapping class group MCG(S, L) or Sym(L) of the pair (S, L). Elements in this symmetry group can (and often do) fix the link and act nontrivially only on its complement. We ignore such elements and focus on the “intrinsic” symmetry group of a link, defined to be the image Σ(L) of the natural homomorphism MCG(S, L) → MCG(S) × MCG(L). This different symmetry group, first defined by Whitten in 1969, records directly whether L is isotopic to a link L obtained from L by permuting components or reversing orientations. While the standard symmetry groups Sym(L) have been computed for knots of up to 10 crossings and most links with up to 9 crossings, we give here the first comprehensive tables of the groups Σ(L). CONTENTS List of Tables 2 List of Figures 2

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The 27 Possible Intrinsic Symmetry Groups of Two-Component Links

We consider the “intrinsic” symmetry group of a two-component link L, defined to be the image Σ(L) of the natural homomorphism from the standard symmetry group MCG(S, L) to the product MCG(S) × MCG(L). This group, first defined by Whitten in 1969, records directly whether L is isotopic to a link L′ obtained from L by permuting components or reversing orientations; it is a subgroup of Γ2, the gr...

متن کامل

Almost Positive Links Have Negative Signature

We analyze properties of links which have diagrams with a small number of negative crossings. We show that if a nontrivial link has a diagram with all crossings positive except possibly one, then the signature of the link is negative. If a link diagram has two negative crossings, we show that the signature of the link is nonpositive with the exception of the left-handed Hopf link (with possible...

متن کامل

A Legendrian Thurston–bennequin Bound from Khovanov Homology

We establish an upper bound for the Thurston–Bennequin number of a Legendrian link using the Khovanov homology of the underlying topological link. This bound is sharp in particular for all alternating links, and knots with nine or fewer crossings.

متن کامل

Knots, Links and Tangles

We start with some terminology from differential topology [1]. Let  be a circle and  ≥ 2 be an integer. An immersion  :  → R is a smooth function whose derivative never vanishes. An embedding  :  → R is an immersion that is oneto-one. It follows that () is a manifold but () need not be ( is only locally one-to-one, so consider the map that twists  into a figure eight). A knot is a s...

متن کامل

Written word recognition by the elementary and advanced level Persian-English bilinguals

According  to  a  basic  prediction  made  by  the  Revised  Hierarchical  Model  (RHM),  at  early  stages  of language  acquisition,  strong  L2-L1  lexical  links  are  formed.  RHM  predicts  that  these  links  weaken with  increasing  proficiency,  although  they  do  not  disappear  even  at  higher  levels  of  language development. To test this prediction, two groups of highly proficie...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Symmetry

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2012